Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2088
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGates, Zacharyen_US
dc.contributor.authorSINGH, ANUPAM KUMARen_US
dc.contributor.authorVinroot, C. Ryanen_US
dc.date.accessioned2019-02-25T09:05:30Z
dc.date.available2019-02-25T09:05:30Z
dc.date.issued2014-08en_US
dc.identifier.citationJournal of Group Theory , 17(4), 589-617.en_US
dc.identifier.issn1433-5883en_US
dc.identifier.issn1435-4446en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2088-
dc.identifier.urihttps://doi.org/10.1515/jgt-2014-0010en_US
dc.description.abstractWe classify all strongly real conjugacy classes of the finite unitary group U(n,𝔽q) when q is odd. In particular, we show that g ∈ U(n,𝔽q) is strongly real if and only if g is an element of some embedded orthogonal group O±(n,𝔽q). Equivalently, g is strongly real in U(n,𝔽q) if and only if g is real and every elementary divisor of g of the form (t ± 1)2m has even multiplicity. We apply this to obtain partial results on strongly real classes in the finite symplectic group Sp(2n,𝔽q), q odd, and a generating function for the number of strongly real classes in U(n,𝔽q), q odd, and we also give partial results on strongly real classes in U(n,𝔽q) when q is even.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectStrongly real classesen_US
dc.subjectUnitary groupsen_US
dc.subjectOdd characteristicen_US
dc.subjectReal classesen_US
dc.subjectStrongly real classesen_US
dc.subject2014en_US
dc.titleStrongly real classes in finite unitary groups of odd characteristicen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Group Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.