Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2312
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPatil, Aashayen_US
dc.contributor.authorSANTHANAM, M. S.en_US
dc.date.accessioned2019-03-15T11:27:05Z
dc.date.available2019-03-15T11:27:05Z
dc.date.issued2015-09en_US
dc.identifier.citationPhysical Review E, 92(3), 032130.en_US
dc.identifier.issn2470-0045en_US
dc.identifier.issn2470-0053en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2312-
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.92.032130en_US
dc.description.abstractCorrelation and similarity measures are widely used in all the areas of sciences and social sciences. Often the variables are not numbers but are instead qualitative descriptors called categorical data. We define and study similarity matrix, as a measure of similarity, for the case of categorical data. This is of interest due to a deluge of categorical data, such as movie ratings, top-10 rankings, and data from social media, in the public domain that require analysis. We show that the statistical properties of the spectra of similarity matrices, constructed from categorical data, follow random matrix predictions with the dominant eigenvalue being an exception. We demonstrate this approach by applying it to the data for Indian general elections and sea level pressures in the North Atlantic ocean.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectRandom matrixen_US
dc.subjectCategorical data analysisen_US
dc.subjectNorth Atlantic oceanen_US
dc.subjectStatistical propertiesen_US
dc.subject2015en_US
dc.titleRandom matrix approach to categorical data analysisen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitlePhysical Review Een_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.