Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2360
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHORWADWALA, ANISA M. H.en_US
dc.contributor.authorMahadevan, Rajeshen_US
dc.date.accessioned2019-03-15T11:28:31Z
dc.date.available2019-03-15T11:28:31Z
dc.date.issued2015-12en_US
dc.identifier.citationProceedings of the Royal Society of Edinburgh: Section A Mathematics, 145(6), 1145-1151.en_US
dc.identifier.issn0308-2105en_US
dc.identifier.issn1473-7124en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2360-
dc.identifier.urihttps://doi.org/10.1017/S0308210515000232en_US
dc.description.abstractIt has been shown by Kesavan (Proc. R. Soc. Edinb. A (133) (2003), 617–624) that the first eigenvalue for the Dirichlet Laplacian in a punctured ball, with the puncture having the shape of a ball, is maximum if and only if the balls are concentric. Recently, Emamizadeh and Zivari-Rezapour (Proc. Am. Math. Soc.136 (2007), 1325–1331) have tried to generalize this result to the case of the p-Laplacian but could succeed only in proving a domain monotonicity result for a weighted eigenvalue problem in which the weights need to satisfy some artificial conditions. In this paper we generalize the result of Kesavan to the case of the p-Laplacian (1 < p < ∞) without any artificial restrictions, and in the process we simplify greatly the proof, even in the case of the Laplacian. The uniqueness of the maximizing domain in the nonlinear case is still an open question.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subjectEigenvalue optimizationen_US
dc.subjectp-Laplacianen_US
dc.subjectArtificial restrictionsen_US
dc.subjectDirichlet Laplacianen_US
dc.subject2015en_US
dc.titleAn eigenvalue optimization problem for the p-Laplacianen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleProceedings of the Royal Society of Edinburgh: Section A Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.