Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2363
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHAGWAT, CHANDRASHEELen_US
dc.contributor.authorPISOLKAR, SUPRIYAen_US
dc.date.accessioned2019-03-15T11:28:31Z
dc.date.available2019-03-15T11:28:31Z
dc.date.issued2015-10en_US
dc.identifier.citationProceedings of the American Mathematical Society, 144, 3151-3156.en_US
dc.identifier.issnFeb-39en_US
dc.identifier.issn1088-6826en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2363-
dc.identifier.urihttps://doi.org/10.1090/proc/12961en_US
dc.description.abstractIn this article we prove that the co-compactness of the arithmetic lattices in a connected semisimple real Lie group is preserved if the lattices under consideration are representation equivalent. This is in the spirit of the question posed by Gopal Prasad and A. S. Rapinchuk in 2014 where instead of representation equivalence, the lattices under consideration are weakly commensurable Zariski dense subgroups.en_US
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.subjectUniform latticesen_US
dc.subjectZariski dense subgroupsen_US
dc.subjectRepresentation equivalenceen_US
dc.subjectconnected semisimpleen_US
dc.subject2015en_US
dc.titleOn uniform lattices in real semisimple groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleProceedings of the American Mathematical Societyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.