Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2384
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMALPATHAK, SHREYASen_US
dc.contributor.authorMa, Xinyouen_US
dc.contributor.authorHase, William L.en_US
dc.date.accessioned2019-03-26T10:01:04Z
dc.date.available2019-03-26T10:01:04Z
dc.date.issued2019-03en_US
dc.identifier.citationJournal of Computational Chemistry, 40(8), 933-936.en_US
dc.identifier.issn0192-8651en_US
dc.identifier.issn1096-987Xen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2384-
dc.identifier.urihttps://doi.org/10.1002/jcc.25604en_US
dc.description.abstractIn Density Functional Theory (DFT) direct dynamics simulations with Unrestricted Hartree Fock (UHF) theory, triplet instability often emerges when numerically integrating a classical trajectory. A broken symmetry initial guess for the wave function is often used to obtain the unrestricted DFT potential energy surface (PES), but this is found to be often insufficient for direct dynamics simulations. An algorithm is described for obtaining smooth transitions between the open‐shell and the closed‐shell regions of the unrestricted PES, and thus stable trajectories, for direct dynamics simulations of dioxetane and its •OCH2‐CH2O• singlet diradical.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.subjectDecompositionen_US
dc.subjectTOC-MAR-2019en_US
dc.subject2019en_US
dc.titleAddressing an instability in unrestricted density functional theory direct dynamics simulationsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleJournal of Computational Chemistryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.