Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKilgour, Michaeen_US
dc.contributor.authorAGARWALLA, BIJAY KUMARen_US
dc.contributor.authorSegal, Dviraen_US
dc.date.accessioned2019-03-26T10:01:04Z
dc.date.available2019-03-26T10:01:04Z
dc.date.issued2019-02en_US
dc.identifier.citationJournal of Chemical Physics, 150(8).en_US
dc.identifier.issn0021-9606en_US
dc.identifier.issn1089-7690en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2394-
dc.identifier.urihttps://doi.org/10.1063/1.5084949en_US
dc.description.abstractWe develop and test a computational framework to study heat exchange in interacting, nonequilibrium open quantum systems. Our iterative full counting statistics path integral (iFCSPI) approach extends a previously well-established influence functional path integral method, by going beyond reduced system dynamics to provide the cumulant generating function of heat exchange. The method is straightforward; we implement it for the nonequilibrium spin boson model to calculate transient and long-time observables, focusing on the steady-state heat current flowing through the system under a temperature difference. Results are compared to perturbative treatments and demonstrate good agreement in the appropriate limits. The challenge of converging nonequilibrium quantities, currents and high order cumulants, is discussed in detail. The iFCSPI, a numerically exact technique, naturally captures strong system-bath coupling and non-Markovian effects of the environment. As such, it is a promising tool for probing fundamental questions in quantum transport and quantum thermodynamics.en_US
dc.language.isoenen_US
dc.publisherAIP Publishingen_US
dc.subjectReduced Density-Matricesen_US
dc.subjectHeat-Transporten_US
dc.subjectTensor Propagatoren_US
dc.subjectTime Evolutionen_US
dc.subjectNanoscaleen_US
dc.subjectDynamicsen_US
dc.subjectCoherenten_US
dc.subjectTOC-MAR-2019en_US
dc.subject2019en_US
dc.titlePath-integral methodology and simulations of quantum thermal transport: Full counting statistics approachen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleJournal of Chemical Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.