Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2409
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BANERJEE, DEBIKA | en_US |
dc.contributor.author | Baruch, Ehud Moshe | en_US |
dc.contributor.author | Tenetov, Evgeny | en_US |
dc.date.accessioned | 2019-03-26T10:01:40Z | |
dc.date.available | 2019-03-26T10:01:40Z | |
dc.date.issued | 2019-06 | en_US |
dc.identifier.citation | Journal of Number Theory, 199, 63-97. | en_US |
dc.identifier.issn | 0022-314X | en_US |
dc.identifier.issn | 1096-1658 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2409 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jnt.2018.04.008 | en_US |
dc.description.abstract | We obtain a Voronoi-Oppenheim summation formula for divisor functions of totally real number fields. This generalizes a formula proved by Oppenheim in 1927. We use a similar method to the one developed by Beineke and Bump in order to prove the classical Oppenheim summation using a certain Eisenstein series and representation theory. Our formula has a simple formulation for real quadratic number fields. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Voronoi summation | en_US |
dc.subject | Bessel functions | en_US |
dc.subject | TOC-MAR-2019 | en_US |
dc.subject | 2019 | en_US |
dc.title | A Voronoi-Oppenheim summation formula for totally real number fields | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Number Theory | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.