Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2468
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBHAGWAT, CHANDRASHEELen_US
dc.contributor.authorFATIMA, AYESHAen_US
dc.date.accessioned2019-04-26T05:27:37Z
dc.date.available2019-04-26T05:27:37Z
dc.date.issued2019-01en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2468-
dc.description.abstractOne can define the notion of primitive length spectrum for a simple regular periodic graph via counting the orbits of closed reduced primitive cycles under an action of a discrete group of automorphisms. We prove that this primitive length spectrum satisfies an analogue of the `Multiplicity one' property. We show that if all but finitely many primitive cycles in two simple regular periodic graphs have equal lengths, then all the primitive cycles have equal lengths. This is a graph-theoretic analogue of a similar theorem in the context of geodesics on hyperbolic spaces. We also prove, in the context of actions of finitely generated abelian groups on a graph, that if the adjacency operators for two actions of such a group on a graph are similar, then corresponding periodic graphs are length isospectral.en_US
dc.description.sponsorshipCouncil of Scientific & Industrial Research (CSIR)en_US
dc.language.isoenen_US
dc.subjectMathematicsen_US
dc.titleOn Spectra of Graphs and Manifoldsen_US
dc.typeThesisen_US
dc.publisher.departmentDept. of Mathematicsen_US
dc.type.degreePh.Den_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20133271en_US
Appears in Collections:PhD THESES

Files in This Item:
File Description SizeFormat 
20133271_Ayesha_Fatima.pdfPh.D Thesis408.68 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.