Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2474
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBashir, Amnaen_US
dc.contributor.authorLew, Jia Hauren_US
dc.contributor.authorShukla, Sudhanshuen_US
dc.contributor.authorGupta, Dishaen_US
dc.contributor.authorBaikie, Tomen_US
dc.contributor.authorChakraborty, Sudipen_US
dc.contributor.authorPATIDAR, RAHULen_US
dc.contributor.authorBruno, Annalisaen_US
dc.contributor.authorMhaisalkar, Subodhen_US
dc.contributor.authorAkhter, Zareenen_US
dc.date.accessioned2019-04-26T06:04:05Z
dc.date.available2019-04-26T06:04:05Z
dc.date.issued2019-04en_US
dc.identifier.citationSolar Energy, 182, 225-236.en_US
dc.identifier.issn0038-092Xen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2474-
dc.identifier.urihttps://doi.org/10.1016/j.solener.2019.02.056en_US
dc.description.abstractThe power conversion efficiency (PCE) of hole conductor free carbon-based perovskite solar cells (PSCs) is restricted by the poor charge extraction and recombination losses at the carbon-perovskite interface. For the first time we successfully demonstrated incorporation of thin layer of copper doped nickel oxide (Cu:NiOx) nanoparticles in carbon-based PSCs, which helps in improving the performance of these solar devices. Cu:NiOx nanoparticles have been synthesized by a facile chemical method, and processed into a paste for screen printing. Extensive X-ray Absorption Spectroscopy (XAS) analysis elucidates the co-ordination of Cu in a NiOx matrix and indicates the presence of around 5.4% Cu in the sample. We fabricated a monolithic perovskite module on a 100 cm(2) glass substrate (active area of 70 cm(2)) with a thin Cu:NiOx layer (80 nm), where the champion device shows an appreciated power conversion efficiency of 12.1% under an AM 1.5G illumination. To the best of our knowledge, this is the highest reported efficiency for such a large area perovskite solar device. I-V scans show that the introduction of Cu:NiOx mesoporous scaffold increases the photocurrent, and yields fill factor (FF) values exceeding 57% due to the better interface and increased hole extraction efficiency. Electrochemical Impedance Spectroscopy (EIS) results reinforce the above results by showing the reduction in recombination resistance (R-rec) of the PSCs that incorporates Cu:NiOx interlayer. The perovskite solar modules with a Cu:NiOx layer are stable for more than 4500 h in an ambient environment (25 degrees C and 65% RH), with PCE degradation of less than 5% of the initial value.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPerovskiteen_US
dc.subjectCu:NiOx/NiOxen_US
dc.subjectCarbonen_US
dc.subjectStabilityen_US
dc.subjectHole selectivityen_US
dc.subjectTOC-APR-2019en_US
dc.subject2019en_US
dc.titleCu-doped nickel oxide interface layer with nanoscale thickness for efficient and highly stable printable carbon-based perovskite solar cellen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleSolar Energyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.