Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2475
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArapostathis, Arien_US
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorSaha, Subhamayen_US
dc.date.accessioned2019-04-26T06:04:05Z
dc.date.available2019-04-26T06:04:05Z
dc.date.issued2019-04en_US
dc.identifier.citationJournal De Mathematiques Pures Et Appliquees, 124, 169-219.en_US
dc.identifier.issn0021-7824en_US
dc.identifier.issn1776-3371en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2475-
dc.identifier.urihttps://doi.org/10.1016/j.matpur.2018.05.008en_US
dc.description.abstractThis paper studies the eigenvalue problem on for a class of second order, elliptic operators of the form , associated with non-degenerate diffusions. We show that strict monotonicity of the principal eigenvalue of the operator with respect to the potential function f fully characterizes the ergodic properties of the associated ground state diffusion, and the unicity of the ground state, and we present a comprehensive study of the eigenvalue problem from this point of view. This allows us to extend or strengthen various results in the literature for a class of viscous Hamilton–Jacobi equations of ergodic type with smooth coefficients to equations with measurable drift and potential. In addition, we establish the strong duality for the equivalent infinite dimensional linear programming formulation of these ergodic control problems. We also apply these results to the study of the infinite horizon risk-sensitive control problem for diffusions, and establish existence of optimal Markov controls, verification of optimality results, and the continuity of the controlled principal eigenvalue with respect to stationary Markov controls.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectGeneralized principal eigenvalueen_US
dc.subjectRecurrence and transienceen_US
dc.subjectViscous Hamilton-Jacobi equationsen_US
dc.subjectRisk-sensitive controlen_US
dc.subjectErgodic controlen_US
dc.subjectSemi-linear eigenvalue problemsen_US
dc.subjectTOC-APR-2019en_US
dc.subject2019en_US
dc.titleStrict monotonicity of principal eigenvalues of elliptic operators in R-d and risk-sensitive controlen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal De Mathematiques Pures Et Appliqueesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.