Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2483
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorLorinczi, Jozsefen_US
dc.date.accessioned2019-04-26T06:04:06Z
dc.date.available2019-04-26T06:04:06Z
dc.date.issued2019-06en_US
dc.identifier.citationJournal of Differential Equations, 267(1), 267-306.en_US
dc.identifier.issn0022-0396en_US
dc.identifier.issn1090-2732en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2483-
dc.identifier.urihttps://doi.org/10.1016/j.jde.2019.01.007en_US
dc.description.abstractWe derive a lower bound on the location of global extrema of eigenfunctions for a large class of non-local Schrodinger operators in convex domains under Dirichlet exterior conditions, featuring the symbol of the kinetic term, the strength of the potential, and the corresponding eigenvalue, and involving a new universal constant. We show a number of probabilistic and spectral geometric implications, and derive a Faber-Krahn type inequality for non-local operators. Our study also extends to potentials with compact support, and we establish bounds on the location of extrema relative to the boundary edge of the support or level sets around minima of the potential.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectNon-local Schr-dinger operatorsen_US
dc.subjectSubordinate Brownian motionen_US
dc.subjectDirichlet exterior value problemen_US
dc.subjectPrincipal eigenvalues and eigenfunctionsen_US
dc.subjectHot spotsen_US
dc.subjectFaber-Krahn inequalityen_US
dc.subjectTOC-APR-2019en_US
dc.subject2019en_US
dc.titleUniversal constraints on the location of extrema of eigenfunctions of non-local Schrodinger operatorsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Differential Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.