Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2522
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yettapu, Gurivi Reddy | en_US |
dc.contributor.author | Talukdar, Debnath | en_US |
dc.contributor.author | Sarkar, Sohini | en_US |
dc.contributor.author | SWARNKAR, ABHISHEK | en_US |
dc.contributor.author | NAG, ANGSHUMAN | en_US |
dc.contributor.author | GHOSH, PRASENJIT | en_US |
dc.contributor.author | MANDAL, PANKAJ | en_US |
dc.date.accessioned | 2019-04-26T09:13:54Z | |
dc.date.available | 2019-04-26T09:13:54Z | |
dc.date.issued | 2016-08 | en_US |
dc.identifier.citation | Nano Letters, 16 (8), 4838-4848. | en_US |
dc.identifier.issn | 1530-6984 | en_US |
dc.identifier.issn | 1530-6992 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2522 | - |
dc.identifier.uri | https://doi.org/10.1021/acs.nanolett.6b01168 | en_US |
dc.description.abstract | Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron–hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm2 V–1 s–1), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal quantum dot system. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Chemical Society | en_US |
dc.subject | Terahertz Conductivity | en_US |
dc.subject | Colloidal CsPbBr3 | en_US |
dc.subject | Mobilities | en_US |
dc.subject | Diffusion Lengths | en_US |
dc.subject | Perovskite nanocrystals | en_US |
dc.subject | Density functional theory | en_US |
dc.subject | Phonon | en_US |
dc.subject | Quantum dots | en_US |
dc.subject | Time-resolved THz | en_US |
dc.subject | Ultrafast carrier dynamics | en_US |
dc.subject | 2016 | en_US |
dc.title | Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Chemistry | en_US |
dc.identifier.sourcetitle | Nano Letters | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.