Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2634
Title: | Computational analysis of fitness landscapes and evolutionary networks from in vitro evolution experiments |
Authors: | Xulvi Brunet, Ramon Campbell, Gregory W. RAJAMANI, SUDHA Jimenez, Jose I. Chen, Irene A Dept. of Biology |
Keywords: | In vitro evolution RNA selection Fitness landscape Nucleic acid sequences Vitro evolution experiments Biochemistry 2016 |
Issue Date: | Aug-2016 |
Publisher: | Elsevier B.V. |
Citation: | Methods, 106, 86-96. |
Abstract: | In vitro selection experiments in biochemistry allow for the discovery of novel molecules capable of specific desired biochemical functions. However, this is not the only benefit we can obtain from such selection experiments. Since selection from a random library yields an unprecedented, and sometimes comprehensive, view of how a particular biochemical function is distributed across sequence space, selection experiments also provide data for creating and analyzing molecular fitness landscapes, which directly map function (phenotypes) to sequence information (genotypes). Given the importance of understanding the relationship between sequence and functional activity, reliable methods to build and analyze fitness landscapes are needed. Here, we present some statistical methods to extract this information from pools of RNA molecules. We also provide new computational tools to construct and study molecular fitness landscapes |
URI: | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2634 https://doi.org/10.1016/j.ymeth.2016.05.012 |
ISSN: | 1046-2023 095-9130 |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.