Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2634
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXulvi Brunet, Ramonen_US
dc.contributor.authorCampbell, Gregory W.en_US
dc.contributor.authorRAJAMANI, SUDHAen_US
dc.contributor.authorJimenez, Jose I.en_US
dc.contributor.authorChen, Irene Aen_US
dc.date.accessioned2019-04-29T09:21:49Z
dc.date.available2019-04-29T09:21:49Z
dc.date.issued2016-08en_US
dc.identifier.citationMethods, 106, 86-96.en_US
dc.identifier.issn1046-2023en_US
dc.identifier.issn095-9130en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2634-
dc.identifier.urihttps://doi.org/10.1016/j.ymeth.2016.05.012en_US
dc.description.abstractIn vitro selection experiments in biochemistry allow for the discovery of novel molecules capable of specific desired biochemical functions. However, this is not the only benefit we can obtain from such selection experiments. Since selection from a random library yields an unprecedented, and sometimes comprehensive, view of how a particular biochemical function is distributed across sequence space, selection experiments also provide data for creating and analyzing molecular fitness landscapes, which directly map function (phenotypes) to sequence information (genotypes). Given the importance of understanding the relationship between sequence and functional activity, reliable methods to build and analyze fitness landscapes are needed. Here, we present some statistical methods to extract this information from pools of RNA molecules. We also provide new computational tools to construct and study molecular fitness landscapesen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectIn vitro evolutionen_US
dc.subjectRNA selectionen_US
dc.subjectFitness landscapeen_US
dc.subjectNucleic acid sequencesen_US
dc.subjectVitro evolution experimentsen_US
dc.subjectBiochemistryen_US
dc.subject2016en_US
dc.titleComputational analysis of fitness landscapes and evolutionary networks from in vitro evolution experimentsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Biologyen_US
dc.identifier.sourcetitleMethodsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.