Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2638
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BHAKTA, MOUSOMI | en_US |
dc.date.accessioned | 2019-04-29T09:21:49Z | |
dc.date.available | 2019-04-29T09:21:49Z | |
dc.date.issued | 2016-01 | en_US |
dc.identifier.citation | Journal of Mathematical Analysis and Applications, 433(1), 681-700. | en_US |
dc.identifier.issn | 0022-247X | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2638 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2015.07.042 | en_US |
dc.description.abstract | We study the existence/nonexistence of positive solutions of Δ2u−μu|x|4=|u|qβ−2u|x|βin Ω, where Ω is a bounded domain and N≥5, qβ=2(N−β)N−4, 0≤β<4 and 0≤μ<(N(N−4)4)2. We prove the nonexistence result when Ω is an open subset of RN, which is star-shaped with respect to the origin. We also study the existence of positive solutions when Ω is a smooth bounded domain with a nontrivial topology and β=0, μ∈(0,μ0), for certain μ0<(N(N−4)4)2 and N≥8. Different behaviors are obtained for Palais–Smale sequences depending on whether β=0 or β>0. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Caffarelli-Kohn | en_US |
dc.subject | Nirenberg type equations | en_US |
dc.subject | Contractible domain | en_US |
dc.subject | Nonexistence Nontrivial topology | en_US |
dc.subject | Palais-Smale | en_US |
dc.subject | 2016 | en_US |
dc.title | Caffarelli–Kohn–Nirenberg type equations of fourth order with the critical exponent and Rellich potential | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Mathematical Analysis and Applications | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.