Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGOSWAMI, ANINDYAen_US
dc.contributor.authorPatel, Jeetenen_US
dc.contributor.authorShevgaonkar, Poorvaen_US
dc.date.accessioned2019-04-29T10:20:30Z
dc.date.available2019-04-29T10:20:30Z
dc.date.issued2016-07en_US
dc.identifier.citationStochastic Analysis and Applications, 34(5), 893-905.en_US
dc.identifier.issn0736-2994en_US
dc.identifier.issn1532-9356en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2865-
dc.identifier.urihttps://doi.org/10.1080/07362994.2016.1189340en_US
dc.description.abstractThis article includes a proof of well posedness of an initial-boundary value problem involving a system of non-local parabolic partial differential equation (PDE), which naturally arises in the study of derivative pricing in a generalized market model, which is known as a semi-Markov modulated geometric Brownian motion (GBM) model We study the well posedness of the problem via a Volterra integral equation of second kind. A probabilistic approach, in particular the method of conditioning on stopping times is used for showing the uniqueness.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectSystem of non-localen_US
dc.subjectOption pricingen_US
dc.subjectPDEen_US
dc.subjectSemi-Markov processesen_US
dc.subjectVolterra integral equationen_US
dc.subjectNon-local parabolic PDEen_US
dc.subjectlocally risk minimizing pricingen_US
dc.subjectOptimal hedgingen_US
dc.subject2016en_US
dc.titleA system of non-local parabolic PDE and application to option pricingen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleStochastic Analysis and Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.