Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2878
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhattacharyya, Sayantanien_US
dc.contributor.authorDE, ANANDITAen_US
dc.contributor.authorMinwalla, Shirazen_US
dc.contributor.authorMohan, Ravien_US
dc.contributor.authorSaha, Arunabhaen_US
dc.date.accessioned2019-04-29T10:20:31Z
dc.date.available2019-04-29T10:20:31Z
dc.date.issued2016-04en_US
dc.identifier.citationJournal of High Energy Physics, 2016, 76.en_US
dc.identifier.issn1126-6708en_US
dc.identifier.issn1029-8479en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2878-
dc.identifier.urihttps://doi.org/10.1007/JHEP04(2016)076en_US
dc.description.abstractWe study SO(d + 1) invariant solutions of the classical vacuum Einstein equations in p + d + 3 dimensions. In the limit d → ∞ with p held fixed we construct a class of solutions labelled by the shape of a membrane (the event horizon), together with a ‘velocity’ field that lives on this membrane. We demonstrate that our metrics can be corrected to nonsingular solutions at first sub-leading order in d if and only if the membrane shape and ‘velocity’ field obey equations of motion which we determine. These equations define a well posed initial value problem for the membrane shape and this ‘velocity’ and so completely determine the dynamics of the black hole. They may be viewed as governing the non-linear dynamics of the light quasi normal modes of Emparan, Suzuki and Tanabe.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectBlack Holesen_US
dc.subjectClassical Theories of Gravityen_US
dc.subjectSO(d + 1) invariant solutionsen_US
dc.subjectClassical vacuum Einstein equationsen_US
dc.subjectVelocityen_US
dc.subject2016en_US
dc.titleA membrane paradigm at large Den_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleJournal of High Energy Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.