Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2897
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBANERJEE, DEBARGHAen_US
dc.contributor.authorNASIT, DARSHANen_US
dc.date.accessioned2019-05-03T03:31:38Z
dc.date.available2019-05-03T03:31:38Z
dc.date.issued2019-04en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2897-
dc.description.abstractWe propose a modified Rankin Selberg convolution, since the functional equation of Rankin-Selberg convolution for arbitrary cusp form doesn’t respect critical line s = 1/2. We extend a result of Goldfeld and Hoffstein about the congruence of cusp forms in ’new’ space under the assumption of the Riemann Hypothesis for modified Rankin-Selberg convolution.We prove Merel’s conjecture which states that the Hecke operators act linearly independently on the winding cycle in the homology group H1(X0(N), Z). We also provide an improvement on the bound of number of Hecke Operators which acts linearly independently on the space of cusp forms using estimates on Kloosterman Sums. It also gives linear independence of Poincare series.en_US
dc.language.isoenen_US
dc.subject2019
dc.subjectMathematicsen_US
dc.titleBound on Torsion Points on Elliptic Curves over Number Fieldsen_US
dc.title.alternativeLinear Independence of Hecke Operatoren_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20141058en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
MS_Thesis.pdf433.42 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.