Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2958
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPrasad, Amritanshuen_US
dc.contributor.authorKAYANATTATH, SEETHALAKSHMIen_US
dc.date.accessioned2019-05-13T03:16:35Z
dc.date.available2019-05-13T03:16:35Z
dc.date.issued2019-04en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/2958-
dc.description.abstractGiven natural numbers s, t such that gcd(s, t) = d, lcm(s, t) = m, an s-core σ, and a t-core τ , we write N_{σ, τ}(k) for the number of m-cores of length no greater than k whose s-core is σ and t-core is τ. In this thesis, we prove that, for k >> 0, N_{σ, τ}(k) is a quasi-polynomial of quasi-period m and degree (s-d)(t-d)/d.en_US
dc.language.isoenen_US
dc.subject2019
dc.subjectPartitionsen_US
dc.subjectYoung diagramen_US
dc.subjectCoreen_US
dc.subjectTransportation polytopeen_US
dc.subjectEhrhart's theoremen_US
dc.titleA Chinese Remainder Theorem for Partitionsen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20141017en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Thesis_20141017.pdfMS Thesis616.31 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.