Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3050
Title: Cu/Cu2O Nanoparticles Supported on a Phenol-Pyridyl COF as a Heterogeneous Catalyst for the Synthesis of Unsymmetrical Diynes via Glaser-Hay Coupling
Authors: CHAKRABORTY, DEBANJAN
NANDI, SHYAMAPADA
MULLANGI, DINESH
HALDAR, SATTWICK
Vinod, Chathakudath P.
VAIDHYANATHAN, RAMANATHAN
Dept. of Chemistry
Keywords: Covalent organic framework
Copper nanoparticles
Heterogeneous catalysis
Glaser-Hay heterocoupling
nsymmetrical diynes
TOC-MAY-2019
2019
Issue Date: May-2019
Publisher: American Chemical Society
Citation: ACS Applied Materials & Interfaces, 11(17), 15670-15679.
Abstract: Covalent organic frameworks (COFs) are a new class of porous crystalline polymers with a modular construct that favors functionalization. COF pores can be used to grow nanoparticles (nPs) with dramatic size reduction, stabilize them as dispersions, and provide excellent nP access. Embedding substrate binding sites in COFs can generate host–guest synergy, leading to enhanced catalytic activity. In this report, Cu/Cu2O nPs (2–3 nm) are grown on a COF, which is built by linking a phenolic trialdehyde and a triamine through Schiff bonds. Their micropores restrict the nP to exceptionally small sizes (∼2–3 nm), and the pore walls decorated with strategically positioned hydrogen-bonding phenolic groups anchor the substrates via hydrogen-bonding, whereas the basic pyridyl sites serve as cationic species to stabilize the [CuclusterCl2]2– type reactive intermediates. This composite catalyst shows high activity for Glaser–Hay heterocoupling reactions, an essential 1,3-diyne yielding reaction with widespread applicability in organic synthesis and material science. Despite their broad successes in homocoupled products, preparation of unsymmetrical 1,3-diynes is challenging due to poor selectivity. Here, our COF-based Cu catalyst shows elevated selectivity toward heterocoupling product(s) (Cu nP loading 0.0992 mol %; turn over frequency: ∼45–50; turn over number: ∼175–190). The reversible redox activity at the Cu centers has been demonstrated by carrying out X-ray photoelectron spectroscopy on the frozen reactions, whereas the crucial interactions between the substrates and the binding sites in their optimized configurations have been modeled using density functional theory methods. This report emphasizes the utility of COFs in developing a heterogeneous catalyst for a truly challenging organic heterocoupling reaction.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3050
http://dx.doi.org/10.1021/acsami.9b02860
ISSN: 1944-8244
1944-8252
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.