Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3079
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMUKHI, SUNILen_US
dc.contributor.authorMurthy, Sameeren_US
dc.date.accessioned2019-05-30T11:41:44Z
dc.date.available2019-05-30T11:41:44Z
dc.date.issued2019-04en_US
dc.identifier.citationCommunications in Number Theory and Physics, 13(1), 225-251.en_US
dc.identifier.issn1931-4523en_US
dc.identifier.issn1931-4531en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3079-
dc.identifier.urihttp://dx.doi.org/10.4310/CNTP.2019.v13.n1.a8en_US
dc.description.abstractIn arXiv: 1706.09426 we conjectured and provided evidence for an identity between Siegel Theta-constants for special Riemann surfaces of genus n and products of Jacobi theta-functions. This arises by comparing two different ways of computing the nth Renyi entropy of free fermions at finite temperature. Here we show that for n = 2 the identity is a consequence of an old result due to Fay for doubly branched Riemann surfaces. For n > 2 we provide a detailed matching of certain zeros on both sides of the identity. This amounts to an elementary proof of the identity for n = 2, while for n >= 3 it gives new evidence for it. We explain why the existence of additional zeros renders the general proof difficult.en_US
dc.language.isoenen_US
dc.publisherInternational Pressen_US
dc.subjectEntanglement entropyen_US
dc.subjectRenyi entropyen_US
dc.subjectConformal field theoryen_US
dc.subject2019en_US
dc.titleFermions on replica geometries and the Θ - θ relationen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleCommunications in Number Theory and Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.