Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3142
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGANGAN, MANASI S.en_US
dc.contributor.authorATHALE, CHAITANYA A.en_US
dc.date.accessioned2019-07-01T05:30:53Z
dc.date.available2019-07-01T05:30:53Z
dc.date.issued2017-02en_US
dc.identifier.citationRoyal Society Open Science, 4(2), 160417.en_US
dc.identifier.issn2054-5703en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3142-
dc.identifier.urihttps://doi.org/10.1098/rsos.160417en_US
dc.description.abstractA long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and -mother machine--based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ?recA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division.en_US
dc.language.isoenen_US
dc.publisherThe Royal Societyen_US
dc.subjectRecAen_US
dc.subjectBacteriaen_US
dc.subjectPopulation variabilityen_US
dc.subjectCellular biologyen_US
dc.subjectBacterial strainsen_US
dc.subjectplasmidsen_US
dc.subject2017en_US
dc.titleThreshold effect of growth rate on population variability of Escherichia coli cell lengthsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Biologyen_US
dc.identifier.sourcetitleRoyal Society Open Scienceen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.