Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3149
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SASTRY, ANIRUDDH | en_US |
dc.contributor.author | BARUA, DEEPAK | en_US |
dc.date.accessioned | 2019-07-01T05:30:53Z | |
dc.date.available | 2019-07-01T05:30:53Z | |
dc.date.issued | 2017-09 | en_US |
dc.identifier.citation | Scientific Reports, 7, 11246. | en_US |
dc.identifier.issn | 2045-2322 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3149 | - |
dc.identifier.uri | https://doi.org/10.1038/s41598-017-11343-5 | en_US |
dc.description.abstract | Knowledge of the upper limits of temperature tolerance is essential to understand how tropical trees will respond to global warming. We quantified leaf thermotolerance in 41 tree species growing in a seasonally dry tropical region of the Indian subcontinent to examine: (1) differences between evergreen and deciduous species; (2) relationships with leaf mass per area (LMA) and leaf size; and, (3) seasonal variation in thermotolerance. Thermotolerance ranged from 45.5 °C to 50.5 °C among species, was higher for evergreen than deciduous species, and was negatively related to a continuous estimate of deciduousness. Species with higher LMA had higher thermotolerance, but we did not detect any relationship between leaf size and thermotolerance. Seasonal changes in thermotolerance varied among species implying that species’ capacity to acclimate may differ. Thermal safety margins, the difference between thermotolerance and maximum habitat temperatures indicate that most species may be highly vulnerable to future warming. Overall our results show that deciduous, and fast growing species with low LMA are likely to be more negatively affected by global warming. This differential vulnerability may lead to directional changes in composition in dry tropical forests, and such changes could alter vegetation-atmosphere feedbacks and further exacerbate global warming. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Nature Publishing Group | en_US |
dc.subject | Leaf thermotolerance | en_US |
dc.subject | Tropical trees | en_US |
dc.subject | Slow-fast resource | en_US |
dc.subject | Acquisition spectrum | en_US |
dc.subject | Thermotolerance | en_US |
dc.subject | 2017 | en_US |
dc.title | Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow-fast resource acquisition spectrum | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Biology | en_US |
dc.identifier.sourcetitle | Scientific Reports | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.