Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3213
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShukla, Prashanten_US
dc.contributor.authorKHODADE, VINAYAK S.en_US
dc.contributor.authorChandra, Mallojjala Sharathen_US
dc.contributor.authorChauhan, Preetien_US
dc.contributor.authorMishra, Saurabhen_US
dc.contributor.authorSiddaramappa, Shivakumaraen_US
dc.contributor.authorPradeep, Bulagonda Eswarappaen_US
dc.contributor.authorSingh, Amiten_US
dc.contributor.authorCHAKRAPANI, HARINATHen_US
dc.date.accessioned2019-07-01T05:33:18Z
dc.date.available2019-07-01T05:33:18Z
dc.date.issued2017-04en_US
dc.identifier.citationChemical Science, 8(7), 4967-4972.en_US
dc.identifier.issn2041-6520en_US
dc.identifier.issn2041-6539en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3213-
dc.identifier.urihttps://doi.org/10.1039/C7SC00873Ben_US
dc.description.abstractUnderstanding the mechanisms of antimicrobial resistance (AMR) will help launch a counter-offensive against human pathogens that threaten our ability to effectively treat common infections. Herein, we report bis(4-nitrobenzyl)sulfanes, which are activated by a bacterial enzyme to produce hydrogen sulfide (H2S) gas. We found that H2S helps maintain redox homeostasis and protects bacteria against antibiotic-triggered oxidative stress “on demand”, through activation of alternate respiratory oxidases and cellular antioxidants. We discovered, a hitherto unknown role for this gas, that chemical inhibition of H2S biosynthesis reversed antibiotic resistance in multidrug-resistant (MDR) uropathogenic Escherichia coli strains of clinical origin, whereas exposure to the H2S donor restored drug tolerance. Together, our study provides a greater insight into the dynamic defence mechanisms of this gas, modes of antibiotic action as well as resistance while progressing towards new pharmacological targets to address AMR.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.subjectRedox bufferingen_US
dc.subjectAntibiotic resistanceen_US
dc.subjectBacteria-specific H2S donoren_US
dc.subjectPharmacological targetsen_US
dc.subjectDemonstrating accelerationen_US
dc.subjectCytoprotective mechanismsen_US
dc.subject2017en_US
dc.title“On demand” redox buffering by H2S contributes to antibiotic resistance revealed by a bacteria-specific H2S donoren_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleChemical Scienceen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.