Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3280
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShanker, G. Shivaen_US
dc.contributor.authorMarkad, Ganesh B.en_US
dc.contributor.authorJAGADEESWARARAO, METIKOTIen_US
dc.contributor.authorBANSODE, UMESHen_US
dc.contributor.authorNAG, ANGSHUMANen_US
dc.date.accessioned2019-07-01T05:35:13Z
dc.date.available2019-07-01T05:35:13Z
dc.date.issued2017-10en_US
dc.identifier.citationACS Energy Letters, 2 (3), 537-543.en_US
dc.identifier.issn2380-8195en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3280-
dc.identifier.urihttps://doi.org/10.1021/acsenergylett.7b00741en_US
dc.description.abstractA combination of high carrier density, high surface area, solution processability, and low cost is desired in a material for electrocatalytic applications, including H2 evolution and a counter electrode of a solar cell. Also, plasmonic-based applications in biological systems can be derived from such material. In this regard, a colloidal nanocomposite of TiN and N-doped few-layer graphene (TiN-NFG) is synthesized from molecular precursors. TiN nanocrystals (NCs) provide free electrons for electrical conductivity and plasmonics, whereas NFG is responsible for charge transport, high surface area, and colloidal stability. Colloidal TiN-NFG nanocomposites exhibit a localized surface plasmon resonance band at around 700 nm. Coatings of the nanocomposite form a counter electrode for efficient (8.9%) dye-sensitized solar cells. Furthermore, the nanocomposite acts as an efficient electrocatalyst for hydrogen evolution reaction, exhibiting an overpotential ?161 mV at a current density of 10 mA/cm2.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectColloidal Nanocompositeen_US
dc.subjectTiN and N-Dopeden_US
dc.subjectFew-Layer Grapheneen_US
dc.subjectPlasmonicsen_US
dc.subjectElectrocatalysisen_US
dc.subject2017en_US
dc.titleColloidal Nanocomposite of TiN and N-Doped Few-Layer Graphene for Plasmonics and Electrocatalysisen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleACS Energy Lettersen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.