Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3315
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNANDI, SHYAMAPADAen_US
dc.contributor.authorCollins, Seanen_US
dc.contributor.authorChakraborty, Debanjanen_US
dc.contributor.authorBanerjee, Debasisen_US
dc.contributor.authorThallapally, Praveen K.en_US
dc.contributor.authorWoo, Tomen_US
dc.contributor.authorVAIDHYANATHAN, RAMANATHANen_US
dc.date.accessioned2019-07-01T05:36:15Z
dc.date.available2019-07-01T05:36:15Z
dc.date.issued2017-01en_US
dc.identifier.citationJournal of the American Chemical Society, 139(5),1734-1737.en_US
dc.identifier.issnFeb-63en_US
dc.identifier.issn1520-5126en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3315-
dc.identifier.urihttps://doi.org/10.1021/jacs.6b10455en_US
dc.description.abstractMetal-organic frameworks (MOFs) have attracted significant attention as solid sorbents in gas separation processes for low-energy postcombustion CO2 capture. The parasitic energy (PE) has been put forward as a holistic parameter that measures how energy efficient (and therefore cost-effective) the CO2 capture process will be using the material. In this work, we present a nickel isonicotinate based ultramicroporous MOF, 1 [Ni-(4PyC)2-DMF], that has the lowest PE for postcombustion CO2 capture reported to date. We calculate a PE of 655 kJ/kg CO2, which is lower than that of the best performing material previously reported, Mg-MOF-74. Further, 1 exhibits exceptional hydrolytic stability with the CO2 adsorption isotherm being unchanged following 7 days of steam-treatment (>85% RH) or 6 months of exposure to the atmosphere. The diffusion coefficient of CO2 in 1 is also 2 orders of magnitude higher than in zeolites currently used in industrial scrubbers. Breakthrough experiments show that 1 only loses 7% of its maximum CO2 capacity under humid conditions.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectUltralow Parasitic Energyen_US
dc.subjectExcellent Moisture Stabilityen_US
dc.subjectMetal-organic frameworksen_US
dc.subjectHumid conditionsen_US
dc.subject2017en_US
dc.titleUltralow Parasitic Energy for Postcombustion CO2 Capture Realized in a Nickel Isonicotinate Metal-Organic Framework with Excellent Moisture Stabilityen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleJournal of the American Chemical Societyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.