Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3323
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRavi, Vikash Kumaren_US
dc.contributor.authorSantra, Pralay K.en_US
dc.contributor.authorJOSHI, NIHARIKAen_US
dc.contributor.authorCHUGH, JEETENDERen_US
dc.contributor.authorSINGH, SACHIN KUMARen_US
dc.contributor.authorRensmo, Hakanen_US
dc.contributor.authorGHOSH, PRASENJITen_US
dc.contributor.authorNAG, ANGSHUMANen_US
dc.date.accessioned2019-07-01T05:37:13Z
dc.date.available2019-07-01T05:37:13Z
dc.date.issued2017-09en_US
dc.identifier.citationJournal of Physical Chemistry Letters, 8(20), 4988-4994en_US
dc.identifier.issn1948-7185en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3323-
dc.identifier.urihttps://doi.org/10.1021/acs.jpclett.7b02192en_US
dc.description.abstractOptoelectronic properties of CsPbBr3 perovskite nanocubes (NCs) depend strongly on the interaction of the organic passivating molecules with the inorganic crystal. To understand this interaction, we employed a combination of synchrotron-based X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR) spectroscopy, and first-principles density functional theory (DFT)-based calculations. Variable energy XPS elucidated the internal structure of the inorganic part in a layer-by-layer fashion, whereas NMR characterized the organic ligands. Our experimental results confirm that oleylammonium ions act as capping ligands by substituting Cs+ ions from the surface of CsPbBr3 NCs. DFT calculations shows that the substitution mechanism does not require much energy for surface reconstruction and, in contrast, stabilizes the nanocrystal by the formation of three hydrogen bonds between the ?NH3+ moiety of oleylammonium and surrounding Br on the surface of NCs. This substitution mechanism and its origin are in stark contrast to the usual adsorption of organic ligands on the surface of typical NCs.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectSubstitution Mechanismen_US
dc.subjectBinding of Organic Ligandsen_US
dc.subjectSurface of CsPbBr3en_US
dc.subjectPerovskite Nanocubesen_US
dc.subject2017en_US
dc.titleOrigin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Chemistryen_US
dc.identifier.sourcetitleJournal of Physical Chemistry Lettersen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.