Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3330
Title: Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic
Authors: Mateo, Paula
Keller, Gerta
PUNEKAR, JAHNAVI
Spangenberg, Jorge E.
Dept. of Earth and Climate Science
Keywords: Late Maastrichtian
Indian Ocean compared
Tethys and South Atlantic
Ninety East
Ridge Volcanism
Deccan volcanism
|Mid-Maastrichtian event
TurnoversClimate change
2017
Issue Date: Jul-2017
Publisher: Elsevier B.V.
Citation: Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 121-138.
Abstract: Planktic foraminiferal analysis, including species populations, diversity trends, high-stress indices and stable isotopes of the latest Campanian through Maastrichtian in the South Atlantic, Tethys and Indian oceans reveal four major climate and faunal events that ended with the Cretaceous-Paleogene (K/Pg), formerly Cretaceous-Tertiary (K/T), mass extinction. The prelude to these events is the late Campanian cooling that reached minimum temperatures in the earliest Maastrichtian (base C31r) correlative with low primary productivity and species diversity. Event-1 begins during the persistent cool climate of the early Maastrichtian (lower C31r) when primary productivity rapidly increased accompanied by rapid species originations, attributed to increased nutrient influx from increased upwelling, erosion during the sea-level fall ~ 70.6 Ma, and Ninety East Ridge volcanism. During Event-2 (upper C31r to lower C30n), climate rapidly warmed by 2–3 °C in deep waters and peaked at 22 °C on land, primary productivity remained high and diversification reached maximum for the entire Cretaceous. We attribute this climate warming to intense Ninety East Ridge volcanic activity beginning ~ 69.5 Ma, accompanied by rapid reorganization of intermediate oceanic circulation. Enhanced greenhouse conditions due to the eruption of Deccan Phase-1 in India resulted in detrimental conditions for planktic foraminifera marking the end of diversification. Global cooling resumed in Event-3 (C30n), species diversity declined gradually accompanied by dwarfing, decreased large specialized species, increased small ecologically tolerant taxa, and ocean acidification. Event-3 is mainly the result of enhanced weathering and volcanogenic CO2 adsorption by the oceans during the preceding warm Event-2 that led to cooling and lower pH in the surface ocean. Event-4 marks the last 250 kyr of the Maastrichtian (C29r), which began with the largest Deccan eruptions (Phase-2) that caused rapid climate warming of 4 °C in deep waters and 8 °C on land, acid rain and ocean acidification leading to a major carbonate crisis preceding the K/T mass extinction.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3330
https://doi.org/10.1016/j.palaeo.2017.01.027
ISSN: 0031-0182
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.