Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3338
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBALASUBRAMANYAM, BASKARen_US
dc.contributor.authorRAGHURAM, A.en_US
dc.date.accessioned2019-07-01T05:37:14Z-
dc.date.available2019-07-01T05:37:14Z-
dc.date.issued2017-06en_US
dc.identifier.citationAmerican Journal of Mathematics, 139, 641-679en_US
dc.identifier.issn27-Feben_US
dc.identifier.issn1080-6377en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3338-
dc.identifier.urihttps://doi.org/10.1353/ajm.2017.0017en_US
dc.description.abstractWe prove an integrality result for the value at s = 1 of the adjoint L-function associated to a cohomological cuspidal automorphic representation on GL(n) over any number field. We then show that primes (outside an exceptional set) dividing this special value give rise to congruences between automorphic forms. We also prove a non-vanishing property at infinity for the relevant Rankin-Selberg L-functions on GL(n)-GL(n).en_US
dc.language.isoenen_US
dc.publisherJohns Hopkins University Pressen_US
dc.subjectSpecial Valuesen_US
dc.subjectAdjoint L-Functionsen_US
dc.subjectCongruences Foren_US
dc.subjectAutomorphic Forms Onen_US
dc.subjectGl(N) Overen_US
dc.subjectNumber Fielden_US
dc.subject2017en_US
dc.titleSpecial Values Of Adjoint L-Functions And Congruences For Automorphic Forms On Gl(N) Over A Number Fielden_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAmerican Journal of Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.