Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3342
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHAKTA, MOUSOMIen_US
dc.contributor.authorMukherjee, Debanganaen_US
dc.date.accessioned2019-07-01T05:37:43Z
dc.date.available2019-07-01T05:37:43Z
dc.date.issued2017-07en_US
dc.identifier.citationDifferential and Integral Equations, 30(5-6),387-422.en_US
dc.identifier.issn0893-4983en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3342-
dc.identifier.uri-en_US
dc.description.abstractIn this paper, we prove the existence of infinitely many nontrivial solutions of the following equations driven by a nonlocal integro-differential operator LK with concave-convex nonlinearities and homogeneous Dirichlet boundary conditions LKu+μ|u|q−1u+λ|u|p−1uu=0inΩ,=0inRN∖Ω, where Ω is a smooth bounded domain in RN, N>2s, s∈(0,1), 0<q<1<p≤N+2sN−2s. Moreover, when LK reduces to the fractional laplacian operator −(−Δ)s, p=N+2sN−2s, 12(N+2sN−2s)<q<1, N>6s, λ=1, we find μ∗>0 such that for any μ∈(0,μ∗), there exists at least one sign changing solution.en_US
dc.language.isoenen_US
dc.publisherKhayyam Publishing, Inc.en_US
dc.subject35S15en_US
dc.subjectBoundary value problemsen_US
dc.subjectPseudodifferential operators 35J20en_US
dc.subjectVariational methods for second-order elliptic equations 49J35en_US
dc.subjectMinimax problems 47G20en_US
dc.subjectIntegro-differential operatorsen_US
dc.subject2017en_US
dc.titleMultiplicity results and sign changing solutions of non-local equations with concave-convex nonlinearitiesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleDifferential and Integral Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.