Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3345
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.date.accessioned2019-07-01T05:37:43Z
dc.date.available2019-07-01T05:37:43Z
dc.date.issued2017-12en_US
dc.identifier.citationMathematical Physics, Analysis and Geometry, 20(25).en_US
dc.identifier.issn1385-0172en_US
dc.identifier.issn1572-9656en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3345
dc.identifier.urihttps://doi.org/10.1007/s11040-017-9256-yen_US
dc.description.abstractEigenfunctions of the fractional Schrödinger operators in a domain D are considered, and a relation between the supremum of the potential and the distance of a maximizer of the eigenfunction from ∂ D is established. This, in particular, extends a recent result of Rachh and Steinerberger arXiv:1608.06604 (2017) to the fractional Schrödinger operators. We also propose a fractional version of the Barta’s inequality and also generalize a celebrated Lieb’s theorem for fractional Schrödinger operators. As applications of above results we obtain a Faber-Krahn inequality for non-local Schrödinger operators.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectPrincipal eigenvalueen_US
dc.subjectNodal domainen_US
dc.subjectFractional Laplacianen_US
dc.subjectBarta's inequalityen_US
dc.subjectGround stateen_US
dc.subjectFractional Faber-Krahnen_US
dc.subjectObstacle problemsen_US
dc.subject2017en_US
dc.titleLocation of Maximizers of Eigenfunctions of Fractional Schrödinger’s Equationsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleMathematical Physics, Analysis and Geometryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.