Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3349
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBORAH, DIGANTAen_US
dc.contributor.authorHaridas, Pranaven_US
dc.contributor.authorVerma, Kaushalen_US
dc.date.accessioned2019-07-01T05:37:43Z
dc.date.available2019-07-01T05:37:43Z
dc.date.issued2018-09en_US
dc.identifier.citationAnalysis and Mathematical Physics, 8(3), 383-414.en_US
dc.identifier.issn1664-2368en_US
dc.identifier.issn1664-235Xen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3349-
dc.identifier.urihttps://doi.org/10.1007/s13324-017-0177-5en_US
dc.description.abstractWe study several quantities associated to the Green’s function of a multiply connected domain in the complex plane. Among them are some intrinsic properties such as geodesics, curvature, and 𝐿2-cohomology of the capacity metric and critical points of the Green’s function. The principal idea used is an affine scaling of the domain that furnishes quantitative boundary behaviour of the Green’s function and related objects.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectGreens functionen_US
dc.subjectCritical pointsen_US
dc.subjectCapactity metricen_US
dc.subjectGeodesics Curvatureen_US
dc.subjectFurnishes quantitative boundaryen_US
dc.subject2018en_US
dc.titleComments on the Green’s function of a planar domainen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAnalysis and Mathematical Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.