Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3351
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biswas, Indranil | en_US |
dc.contributor.author | D MELLO, SHANE | en_US |
dc.date.accessioned | 2019-07-01T05:37:43Z | |
dc.date.available | 2019-07-01T05:37:43Z | |
dc.date.issued | 2017-09 | en_US |
dc.identifier.citation | Proceedings - Mathematical Sciences, 127(4), 615-624. | en_US |
dc.identifier.issn | 0253-4142 | en_US |
dc.identifier.issn | 0973-7685 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3351 | - |
dc.identifier.uri | https://doi.org/10.1007%2Fs12044-017-0347-2 | en_US |
dc.description.abstract | Let (X,σ) be a geometrically irreducible smooth projective M-curve of genus g defined over the field of real numbers. We prove that the n-th symmetric product of (X,σ) is an M-variety for n=2,3 and n≥2g−1. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | M-curve | en_US |
dc.subject | Symmetric product | en_US |
dc.subject | Real locus | en_US |
dc.subject | 2017 | en_US |
dc.title | M-curves and symmetric products | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Proceedings - Mathematical Sciences | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.