Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3353
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeelen, Peteren_US
dc.contributor.authorGlynn, Daviden_US
dc.contributor.authorHoholdt, Tomen_US
dc.contributor.authorKAIPA, KRISHNAen_US
dc.date.accessioned2019-07-01T05:37:43Z-
dc.date.available2019-07-01T05:37:43Z-
dc.date.issued2017-11en_US
dc.identifier.citationAdvances in Mathematics of Communications, 11(4), 777-790.en_US
dc.identifier.issn1930-5346en_US
dc.identifier.issn1930-5338en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3353-
dc.identifier.urihttps://doi.org/10.3934/amc.2017057en_US
dc.description.abstractIn this article we count the number of [n,k][n,k] generalized Reed-Solomon (GRS) codes, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of [n,3][n,3] MDS codes with n=6,7,8,9n=6,7,8,9.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.subjectGeneralized Reed-Solomon codesen_US
dc.subjectMDS codesen_US
dc.subjectn-arcsen_US
dc.subjectCounting generalizeden_US
dc.subject2017en_US
dc.titleCounting generalized Reed-Solomon codesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAdvances in Mathematics of Communicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.