Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3353
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Beelen, Peter | en_US |
dc.contributor.author | Glynn, David | en_US |
dc.contributor.author | Hoholdt, Tom | en_US |
dc.contributor.author | KAIPA, KRISHNA | en_US |
dc.date.accessioned | 2019-07-01T05:37:43Z | - |
dc.date.available | 2019-07-01T05:37:43Z | - |
dc.date.issued | 2017-11 | en_US |
dc.identifier.citation | Advances in Mathematics of Communications, 11(4), 777-790. | en_US |
dc.identifier.issn | 1930-5346 | en_US |
dc.identifier.issn | 1930-5338 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3353 | - |
dc.identifier.uri | https://doi.org/10.3934/amc.2017057 | en_US |
dc.description.abstract | In this article we count the number of [n,k][n,k] generalized Reed-Solomon (GRS) codes, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of [n,3][n,3] MDS codes with n=6,7,8,9n=6,7,8,9. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Mathematical Sciences | en_US |
dc.subject | Generalized Reed-Solomon codes | en_US |
dc.subject | MDS codes | en_US |
dc.subject | n-arcs | en_US |
dc.subject | Counting generalized | en_US |
dc.subject | 2017 | en_US |
dc.title | Counting generalized Reed-Solomon codes | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Advances in Mathematics of Communications | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.