Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3359
Title: Some spaces of polynomial knots
Authors: Raundal, Hitesh
MISHRA, RAMA
Dept. of Mathematics
Keywords: Polynomial knot
Polynomial representation
Homotopy
Isotopy
2017
Issue Date: Mar-2017
Publisher: Elsevier B.V.
Citation: Topology and its Applications, 218, 66-92.
Abstract: In this paper we study the topology of three different kinds of spaces associated to polynomial knots of degree at most d, for d >= 2. We denote these spaces by O-d,O- P-d and Q(d). For d >= 3, we show that the spaces O-d and T-d are path connected and the space O-d has the same homotopy type as S-2. Considering the space P = boolean OR(d >= 2) O-d of all polynomial knots with the inductive limit topology, we prove that it to has the same homotopy type as S-2. We also show that if two polynomial knots are path equivalent in Q(d), then they are topologically equivalent. Furthermore, the number of path components in Q(d) are in multiples of eight.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3359
https://doi.org/10.1016/j.topol.2016.12.020
ISSN: 0166-8641
0166-8641
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.