Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3359
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaundal, Hiteshen_US
dc.contributor.authorMISHRA, RAMAen_US
dc.date.accessioned2019-07-01T05:37:44Z
dc.date.available2019-07-01T05:37:44Z
dc.date.issued2017-03en_US
dc.identifier.citationTopology and its Applications, 218, 66-92.en_US
dc.identifier.issn0166-8641en_US
dc.identifier.issn0166-8641en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3359-
dc.identifier.urihttps://doi.org/10.1016/j.topol.2016.12.020en_US
dc.description.abstractIn this paper we study the topology of three different kinds of spaces associated to polynomial knots of degree at most d, for d >= 2. We denote these spaces by O-d,O- P-d and Q(d). For d >= 3, we show that the spaces O-d and T-d are path connected and the space O-d has the same homotopy type as S-2. Considering the space P = boolean OR(d >= 2) O-d of all polynomial knots with the inductive limit topology, we prove that it to has the same homotopy type as S-2. We also show that if two polynomial knots are path equivalent in Q(d), then they are topologically equivalent. Furthermore, the number of path components in Q(d) are in multiples of eight.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectPolynomial knoten_US
dc.subjectPolynomial representationen_US
dc.subjectHomotopyen_US
dc.subjectIsotopyen_US
dc.subject2017en_US
dc.titleSome spaces of polynomial knotsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleTopology and its Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.