Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3360
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPRABHU, NEHAen_US
dc.date.accessioned2019-07-01T05:37:44Z
dc.date.available2019-07-01T05:37:44Z
dc.date.issued2017-06en_US
dc.identifier.citationCzechoslovak Mathematical Journal, 67(2), 439-455.en_US
dc.identifier.issn0011-4642en_US
dc.identifier.issn1572-9141en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3360
dc.identifier.urihttps://doi.org/10.21136/CMJ.2017.0712-15en_US
dc.description.abstractA classical result in number theory is Dirichlet's theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly k prime factors for k > 1. Building upon a proof by E.M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree n <= x with k prime factors such that a fixed quadratic equation has exactly 2 k solutions modulo n.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectDirichlet's theoremen_US
dc.subjectAsymptotic densityen_US
dc.subjectPrimes in arithmeticen_US
dc.subjectProgression squarefree numberen_US
dc.subject2017en_US
dc.titleDensity of solutions to quadratic congruencesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleCzechoslovak Mathematical Journalen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.