Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3361
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrabhu, Nehaen_US
dc.contributor.authorSINHA, KANEENIKAen_US
dc.date.accessioned2019-07-01T05:38:41Z
dc.date.available2019-07-01T05:38:41Z
dc.date.issued2019-06en_US
dc.identifier.citationInternational Mathematics Research Notices, 2019(12), 3768-3811.en_US
dc.identifier.issn1073-7928en_US
dc.identifier.issn1687-0247en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3361-
dc.identifier.urihttps://doi.org/10.1093/imrn/rnx238en_US
dc.description.abstractWe study fluctuations in the distribution of families of p-th Fourier coefficients af(p) of normalized holomorphic Hecke eigenforms f of weight k with respect to SL2(Z) as k→∞ and primes p→∞. These families are known to be equidistributed with respect to the Sato–Tate measure. We consider a fixed interval I⊂[−2,2] and derive the variance of the number of af(p)’s lying in I as p→∞ and k→∞ (at a suitably fast rate). The number of af(p)’s lying in I is shown to asymptotically follow a Gaussian distribution when appropriately normalized. A similar theorem is obtained for primitive Maass cusp formsen_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectFluctuationsen_US
dc.subjectDistribution of Hecke Eigenvaluesen_US
dc.subjectSato-Tate Measureen_US
dc.subjectPositive integeren_US
dc.subject2019en_US
dc.titleFluctuations in the Distribution of Hecke Eigenvalues about the Sato-Tate Measureen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleInternational Mathematics Research Noticesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.