Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3368
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHarikrishnan, K. P.en_US
dc.contributor.authorMisra, R.en_US
dc.contributor.authorAMBIKA, G.en_US
dc.date.accessioned2019-07-01T05:38:41Z
dc.date.available2019-07-01T05:38:41Z
dc.date.issued2017-10en_US
dc.identifier.citationChaos Solitons and Fractals, 103, 450-459.en_US
dc.identifier.issn0960-0779en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3368-
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2017.06.031en_US
dc.description.abstractIn the context of chaotic dynamical systems with exponential divergence of nearby trajectories in phase space, hyperchaos is defined as a state where there is divergence or stretching in at least two directions during the evolution of the system. Hence the detection and characterization of a hyperchaotic attractor is usually done using the spectrum of Lyapunov Exponents (LEs) that measure this rate of divergence along each direction. Though hyperchaos arise in different dynamical situations and find several practical applications, a proper understanding of the geometric structure of a hyperchaotic attractor still remains an unsolved problem. In this paper, we present strong numerical evidence to suggest that the geometric structure of a hyperchaotic attractor can be characterized using a multifractal spectrum with two superimposed components. In other words, apart from developing an extra positive LE, there is also a structural change as a chaotic attractor makes a transition to the hyperchaotic phase and the attractor changes from a simple multifractal to a dual multifractal, equivalent to two inter-mingled multifractals. We argue that a cross-over behavior in the scaling region for computing the correlation dimension is a manifestation of such a structure. In order to support this claim, we present an illustrative example of a synthetically generated set of points in the unit interval (a Cantor set with a variable iteration scheme) displaying dual multifractal spectrum. Our results are also used to develop a general scheme to generate both hyperchaotic as well as high dimensional chaotic attractors by coupling two low dimensional chaotic attractors and tuning a time scale parameter.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectHyperchaotic attractoren_US
dc.subjectSuperpositionen_US
dc.subjectMultifractalsen_US
dc.subjectHyperchaotic attractoren_US
dc.subjectMultifractalsen_US
dc.subjectTime series analysisen_US
dc.subject2017en_US
dc.titleIs a hyperchaotic attractor superposition of two multifractals?en_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleChaos Solitons and Fractalsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.