Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3497
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRondiya, Sachinen_US
dc.contributor.authorWadnerkar, Nitinen_US
dc.contributor.authorJadhav, Yogeshen_US
dc.contributor.authorJadkar, Sandeshen_US
dc.contributor.authorHaram, Santoshen_US
dc.contributor.authorKABIR, MUKULen_US
dc.date.accessioned2019-07-01T05:53:49Z
dc.date.available2019-07-01T05:53:49Z
dc.date.issued2017-03en_US
dc.identifier.citationChemistry of Materials, 29 (7), 3133-3142.en_US
dc.identifier.issn0897-4756en_US
dc.identifier.issn1520-5002en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3497-
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.7b00149en_US
dc.description.abstractEarth-abundant quaternary chalcogenides are promising candidate materials for thin-film solar cells. Here we have synthesized Cu2NiSnS4 nanocrystals and thin films in a novel zincblende type cubic phase using a facile hot-injection method. The structural, electronic, and optical properties are studied using various experimental techniques, and the results are further corroborated within first-principles density functional theory based calculations. The estimated direct band gap ∼ 1.57 eV and high optical absorption coefficient ∼ 106 cm–1 indicate potential application in a low-cost thin-film solar cell. Further, the alignments for both conduction and valence bands are directly measured through cyclic voltametry. The 1.47 eV electrochemical gap and very small conduction band offset of −0.12 eV measured at the CNTS/CdS heterojunction are encouraging factors for the device. These results enable us to model carrier transport across the heterostructure interface. Finally, we have fabricated a CNTS solar cell device for the first time, with high open circuit voltage and fill factor. The results presented here should attract further studies.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectStructuralen_US
dc.subjectElectronicen_US
dc.subjectOptical Propertiesen_US
dc.subjectPhotovoltaic Applicationsen_US
dc.subjectSolar photovoltaicen_US
dc.subjectQuaternary chalcogenidesen_US
dc.subject2017en_US
dc.titleStructural, Electronic, and Optical Properties of Cu2NiSnS4: A Combined Experimental and Theoretical Study toward Photovoltaic Applicationsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleChemistry of Materialsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.