Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3689
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKHARE, AVINASHen_US
dc.contributor.authorSaxena, Avadhen_US
dc.date.accessioned2019-07-23T11:10:51Z
dc.date.available2019-07-23T11:10:51Z
dc.date.issued2012-02en_US
dc.identifier.citationPramana, 78(2), 187-213.en_US
dc.identifier.issn0304-4289en_US
dc.identifier.issn0973-7111en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3689-
dc.identifier.urihttps://doi.org/10.1007/s12043-011-0215-zen_US
dc.description.abstractCoupled discrete models abound in several areas of physics. Here we provide an extensive set of exact quasiperiodic solutions of a number of coupled discrete models in terms of Lamé polynomials of order one and two. Some of the models discussed are: (i) coupled Salerno model, (ii) coupled Ablowitz–Ladik model, (iii) coupled saturated discrete nonlinear Schrödinger equation, (iv) coupled ϕ 4 model and (v) coupled ϕ 6 model. Furthermore, we show that most of these coupled models in fact also possess an even broader class of exact solutions.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectCoupled discreteen_US
dc.subjectOrder one and twoen_US
dc.subjectSolitons Jacobien_US
dc.subjectelliptic functions phaseen_US
dc.subjectTransitions field theoriesen_US
dc.subject2012en_US
dc.titleSolutions of several coupled discrete models in terms of Lamé polynomials of order one and twoen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitlePramanaen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.