Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3691
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKHARE, AVINASHen_US
dc.contributor.authorSaxena, Avadhen_US
dc.contributor.authorKhare, Apoorvaen_US
dc.date.accessioned2019-07-23T11:10:52Z
dc.date.available2019-07-23T11:10:52Z
dc.date.issued2012-08en_US
dc.identifier.citationPramana, 78(3), 377-392.en_US
dc.identifier.issn0304-4289en_US
dc.identifier.issn0973-7111en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3691-
dc.identifier.urihttps://doi.org/10.1007/s12043-012-0327-0en_US
dc.description.abstractCoupled discrete models are ubiquitous in a variety of physical contexts. We provide an extensive set of exact quasiperiodic solutions of a number of coupled discrete models in terms of Lamé polynomials of arbitrary order. The models discussed are: (i) coupled Salerno model, (ii) coupled Ablowitz–Ladik model, (iii) coupled ϕ 4 model and (iv) coupled ϕ 6 model. In all these cases we show that the coefficients of the Lamé polynomials are such that the Lamé polynomials can be re-expressed in terms of Chebyshev polynomials of the relevant Jacobi elliptic function.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectDiscrete modelsen_US
dc.subjectLame polynomialsen_US
dc.subjectArbitrary orderen_US
dc.subjectJacobi elliptic functionsen_US
dc.subjectField theories phase transitionsen_US
dc.subject2012en_US
dc.titleSolutions of several coupled discrete models in terms of Lamé polynomials of arbitrary orderen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitlePramanaen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.