Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSPALLONE, STEVENen_US
dc.date.accessioned2019-07-23T11:14:13Z
dc.date.available2019-07-23T11:14:13Z
dc.date.issued2012-01en_US
dc.identifier.citationPacific Journal of Mathematics, 256( 2), 435-488.en_US
dc.identifier.issn0030-8730en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3725-
dc.identifier.urihttp://dx.doi.org/10.2140/pjm.2012.256.435en_US
dc.description.abstractLet G be a reductive algebraic group over ℚ, and suppose that Γ ⊂ G(ℝ) is an arithmetic subgroup defined by congruence conditions. A basic problem in arithmetic is to determine the multiplicities of discrete series representations in L2(Γ∖G(ℝ)), and in general to determine the traces of Hecke operators on these spaces. In this paper we give a conjectural formula for the traces of Hecke operators, in terms of stable distributions. It is based on a stable version of Arthur’s formula for L2-Lefschetz numbers, which is due to Kottwitz. We reduce this formula to the computation of elliptic p-adic orbital integrals and the theory of endoscopic transfer. As evidence for this conjecture, we demonstrate the agreement of the central terms of this formula with the unipotent contributions to the multiplicity coming from Selberg’s trace formula of Wakatsuki, in the case G = GSp4 and Γ = GSp4(ℤ).en_US
dc.language.isoenen_US
dc.publisherMathematical Sciences Publishersen_US
dc.subjectDiscrete seriesen_US
dc.subjectHecke operatorsen_US
dc.subjectOrbital integralsen_US
dc.subjectShimura varietiesen_US
dc.subjectEndoscopyen_US
dc.subjectFundamental lemmaen_US
dc.subjectStable trace formulaen_US
dc.subject2012en_US
dc.titleStable trace formulas and discrete series multiplicitieen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitlePacific Journal of Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.