Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3733
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CHORWADWALA, ANISA M. H. | en_US |
dc.contributor.author | M. K. Vemuri | en_US |
dc.date.accessioned | 2019-07-23T11:33:27Z | |
dc.date.available | 2019-07-23T11:33:27Z | |
dc.date.issued | 2012-11 | en_US |
dc.identifier.citation | Geometriae Dedicata, 167(1), 11-21. | en_US |
dc.identifier.issn | 0046-5755 | en_US |
dc.identifier.issn | 1572-9168 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3733 | - |
dc.identifier.uri | https://doi.org/10.1007/s10711-012-9800-7 | en_US |
dc.description.abstract | Let B 1 be a ball in a non-compact rank-one symmetric space and let B 0 be a smaller ball inside it. It is shown that if y is the solution of the problem −Δu = 1 in B1∖B0¯ vanishing on the boundary, then the Dirichlet-energy of y is minimal if and only if the balls are concentric. It is also shown that the first Dirichlet eigenvalue of the Laplacian on B1∖B0¯ is maximal if and only if the two balls are concentric. The formalism of Damek-Ricci harmonic spaces is used. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Shape optimization problem | en_US |
dc.subject | Rank one symmetric spaces of non-compact type | en_US |
dc.subject | Dirichlet boundary value problem | en_US |
dc.subject | Damek-Ricci harmonic | en_US |
dc.subject | 2012 | en_US |
dc.title | Two functionals connected to the Laplacian in a class of doubly connected domains on rank one symmetric spaces of non-compact type | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Geometriae Dedicata | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.