Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3733
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHORWADWALA, ANISA M. H.en_US
dc.contributor.authorM. K. Vemurien_US
dc.date.accessioned2019-07-23T11:33:27Z
dc.date.available2019-07-23T11:33:27Z
dc.date.issued2012-11en_US
dc.identifier.citationGeometriae Dedicata, 167(1), 11-21.en_US
dc.identifier.issn0046-5755en_US
dc.identifier.issn1572-9168en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3733-
dc.identifier.urihttps://doi.org/10.1007/s10711-012-9800-7en_US
dc.description.abstractLet B 1 be a ball in a non-compact rank-one symmetric space and let B 0 be a smaller ball inside it. It is shown that if y is the solution of the problem −Δu = 1 in B1∖B0¯ vanishing on the boundary, then the Dirichlet-energy of y is minimal if and only if the balls are concentric. It is also shown that the first Dirichlet eigenvalue of the Laplacian on B1∖B0¯ is maximal if and only if the two balls are concentric. The formalism of Damek-Ricci harmonic spaces is used.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectShape optimization problemen_US
dc.subjectRank one symmetric spaces of non-compact typeen_US
dc.subjectDirichlet boundary value problemen_US
dc.subjectDamek-Ricci harmonicen_US
dc.subject2012en_US
dc.titleTwo functionals connected to the Laplacian in a class of doubly connected domains on rank one symmetric spaces of non-compact typeen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleGeometriae Dedicataen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.