Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3770
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BHAGWAT, PANKAJ | en_US |
dc.contributor.author | Marchand, Eric | en_US |
dc.date.accessioned | 2019-07-24T07:05:52Z | |
dc.date.available | 2019-07-24T07:05:52Z | |
dc.date.issued | 2019-05 | en_US |
dc.identifier.citation | American Statistician. | en_US |
dc.identifier.issn | 0003-1305 | en_US |
dc.identifier.issn | 1537-2731 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3770 | - |
dc.identifier.uri | https://doi.org/10.1080/00031305.2019.1604432 | en_US |
dc.description.abstract | We present an example of a proper Bayes point estimator which is inadmissible. It occurs for a negative binomial model with shape parameter a, probability parameter p, prior densities of the form π(a,p) = β g(a) (1−p)β−1, and for estimating the population mean μ=a(1−p)/p under squared error loss. Other intriguing features are exhibited such as the constancy of the Bayes estimator with respect to the choice of g, including degenerate or known a cases. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.subject | Bayes estimator | en_US |
dc.subject | Inadmissibility | en_US |
dc.subject | Negative binomial | en_US |
dc.subject | TOC-JUL-2019 | en_US |
dc.subject | 2019 | en_US |
dc.title | On a Proper Bayes, but Inadmissible Estimator | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | American Statistician. | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.