Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3783
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BISWAS, ANUP | en_US |
dc.contributor.author | Lorinczi, Jozsef | en_US |
dc.date.accessioned | 2019-07-24T07:05:53Z | |
dc.date.available | 2019-07-24T07:05:53Z | |
dc.date.issued | 2019-05 | en_US |
dc.identifier.citation | SIAM Journal on Mathematical Analysis, 51(3), 1543-1581. | en_US |
dc.identifier.issn | 0036-1410 | en_US |
dc.identifier.issn | 1095-7154 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3783 | - |
dc.identifier.uri | https://doi.org/10.1137/18M1171722 | en_US |
dc.description.abstract | We consider Dirichlet exterior value problems related to a class of nonlocal Schrödinger operators, whose kinetic terms are given in terms of Bernstein functions of the Laplacian. We prove elliptic and parabolic Aleksandrov--Bakelman--Pucci (ABP) type estimates and as an application obtain existence and uniqueness of weak solutions. Next we prove a refined maximum principle in the sense of Berestycki--Nirenberg--Varadhan and a converse. Also, we prove a weak antimaximum principle in the sense of Clément--Peletier, valid on compact subsets of the domain, and a full antimaximum principle by restricting to fractional Schrödinger operators. Furthermore, we show a maximum principle for narrow domains and a refined elliptic ABP-type estimate. Finally, we obtain Liouville-type theorems for harmonic solutions and for a class of semilinear equations. Our approach is probabilistic, making use of the properties of subordinate Brownian motion. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.subject | Nonlocal schrodinger operator | en_US |
dc.subject | Dirichlet exterior condition problem | en_US |
dc.subject | Refined maximum principle | en_US |
dc.subject | Antimaximum principle | en_US |
dc.subject | Aleksandrov | en_US |
dc.subject | Bakelman | en_US |
dc.subject | Pucci estimate | en_US |
dc.subject | Liouville theorem | en_US |
dc.subject | Bernstein function | en_US |
dc.subject | Subordinate Brownian motion | en_US |
dc.subject | Principal eigenvalue and eigenfunction | en_US |
dc.subject | TOC-JUL-2019 | en_US |
dc.subject | 2019 | en_US |
dc.title | Maximum Principles and Aleksandrov-Bakelman-Pucci Type Estimates for Nonlocal Schro Odinger Equations with Exterior Conditions | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | SIAM Journal on Mathematical Analysis | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.