Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3783
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorLorinczi, Jozsefen_US
dc.date.accessioned2019-07-24T07:05:53Z
dc.date.available2019-07-24T07:05:53Z
dc.date.issued2019-05en_US
dc.identifier.citationSIAM Journal on Mathematical Analysis, 51(3), 1543-1581.en_US
dc.identifier.issn0036-1410en_US
dc.identifier.issn1095-7154en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3783-
dc.identifier.urihttps://doi.org/10.1137/18M1171722en_US
dc.description.abstractWe consider Dirichlet exterior value problems related to a class of nonlocal Schrödinger operators, whose kinetic terms are given in terms of Bernstein functions of the Laplacian. We prove elliptic and parabolic Aleksandrov--Bakelman--Pucci (ABP) type estimates and as an application obtain existence and uniqueness of weak solutions. Next we prove a refined maximum principle in the sense of Berestycki--Nirenberg--Varadhan and a converse. Also, we prove a weak antimaximum principle in the sense of Clément--Peletier, valid on compact subsets of the domain, and a full antimaximum principle by restricting to fractional Schrödinger operators. Furthermore, we show a maximum principle for narrow domains and a refined elliptic ABP-type estimate. Finally, we obtain Liouville-type theorems for harmonic solutions and for a class of semilinear equations. Our approach is probabilistic, making use of the properties of subordinate Brownian motion.en_US
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.subjectNonlocal schrodinger operatoren_US
dc.subjectDirichlet exterior condition problemen_US
dc.subjectRefined maximum principleen_US
dc.subjectAntimaximum principleen_US
dc.subjectAleksandroven_US
dc.subjectBakelmanen_US
dc.subjectPucci estimateen_US
dc.subjectLiouville theoremen_US
dc.subjectBernstein functionen_US
dc.subjectSubordinate Brownian motionen_US
dc.subjectPrincipal eigenvalue and eigenfunctionen_US
dc.subjectTOC-JUL-2019en_US
dc.subject2019en_US
dc.titleMaximum Principles and Aleksandrov-Bakelman-Pucci Type Estimates for Nonlocal Schro Odinger Equations with Exterior Conditionsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleSIAM Journal on Mathematical Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.