Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3854
Title: Estimates of automorphic cusp forms over quaternion algebras
Authors: Aryasomayajula, Anilatmaja
BALASUBRAMANYAM, BASKAR
Dept. of Mathematics
Keywords: Automorphic forms
Hilbert modular forms
Quaternion algebras
Bergman kernels
2018
Issue Date: May-2018
Publisher: World Scientific Publishing
Citation: International Journal of Number Theory, 14 (04), 1143-1170.
Abstract: In this paper, using methods from geometric analysis and theory of heat kernels, we derive qualitative estimates of automorphic cusp forms defined over quaternion algebras. Using which, we prove an average version of the holomorphic QUE conjecture. We then derive quantitative estimates of classical Hilbert modular cusp forms. This is a generalization of the results from [A. Aryasomayajula, Heat kernel approach for sup-norm bounds for cusp forms of integral and half-integral weight, Arch. Math.106(2) (2016) 165-173; J. S. Friedman, J. Jorgenson and J. Kramer, Uniform sup-norm bounds on average for cusp forms of higher weights, in Arbeitstagung Bonn 2013, Progress in Mathematics, Vol. 319 (Birkh-user/Springer, Cham, 2016), pp. 127-154] to higher dimensions.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3854
https://doi.org/10.1142/S1793042118500719
ISSN: 1793-0421
1793-7310
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.