Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3867
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorLorinczi, Jozsefen_US
dc.date.accessioned2019-09-09T11:26:39Z
dc.date.available2019-09-09T11:26:39Z
dc.date.issued2018-10en_US
dc.identifier.citationFractional Calculus and Applied Analysis, 21(5).en_US
dc.identifier.issn1311-0454en_US
dc.identifier.issn1314-2224en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3867-
dc.identifier.urihttps://doi.org/10.1515/fca-2018-0070en_US
dc.description.abstractWe show a strong maximum principle and an Alexandrov-Bakelman-Pucci estimate for the weak solutions of a Cauchy problem featuring Caputo time-derivatives and non-local operators in space variables given in terms of Bernstein functions of the Laplacian. To achieve this, first we propose a suitable meaning of a weak solution, show their existence and uniqueness, and establish a probabilistic representation in terms of time-changed Brownian motion. As an application, we also discuss an inverse source problem.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectCaputo time-derivativesen_US
dc.subjectNon-local operatorsen_US
dc.subjectBernstein functions of the Laplacianen_US
dc.subjectNon-local Dirichlet problemen_US
dc.subjectABP estimateen_US
dc.subjectStrong maximum principleen_US
dc.subjectMittag-Leffler functionen_US
dc.subjectFractional Duhamel's principleen_US
dc.subject2018en_US
dc.titleMaximum principles for time-fractional Cauchy problems with spatially non-local componentsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleFractional Calculus and Applied Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.