Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3947
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MALPATHAK, SHREYAS | en_US |
dc.contributor.author | Ma, Xinyou | en_US |
dc.contributor.author | Hase, William L. | en_US |
dc.date.accessioned | 2019-09-09T11:35:44Z | |
dc.date.available | 2019-09-09T11:35:44Z | |
dc.date.issued | 2018-04 | en_US |
dc.identifier.citation | Journal of Chemical Physics, 148(16), 164309. | en_US |
dc.identifier.issn | 0021-9606 | en_US |
dc.identifier.issn | 1089-7690 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3947 | - |
dc.identifier.uri | https://doi.org/10.1063/1.5024908 | en_US |
dc.description.abstract | n a previous UB3LYP/6-31G* direct dynamics simulation, non-Rice–Ramsperger–Kassel–Marcus (RRKM) unimolecular dynamics was found for vibrationally excited 1,2-dioxetane (DO); [R. Sun et al., J. Chem. Phys. 137, 044305 (2012)]. In the work reported here, these dynamics are studied in more detail using the same direct dynamics method. Vibrational modes of DO were divided into 4 groups, based on their characteristic motions, and each group excited with the same energy. To compare with the dynamics of these groups, an additional group of trajectories comprising a microcanonical ensemble was also simulated. The results of these simulations are consistent with the previous study. The dissociation probability, N(t)/N(0), for these excitation groups were all different. Groups A, B, and C, without initial excitation in the O–O stretch reaction coordinate, had a time lag to of 0.25–1.0 ps for the first dissociation to occur. Somewhat surprisingly, the C–H stretch Group A and out-of-plane motion Group C excitations had exponential dissociation probabilities after to, with a rate constant ∼2 times smaller than the anharmonic RRKM value. Groups B and D, with excitation of the H–C–H bend and wag, and ring bend and stretch modes, respectively, had bi-exponential dissociation probabilities. For Group D, with excitation localized in the reaction coordinate, the initial rate constant is ∼7 times larger than the anharmonic RRKM value, substantial apparent non-RRKM dynamics. N(t)/N(0) for the random excitation trajectories was non-exponential, indicating intrinsic non-RRKM dynamics. For the trajectory integration time of 13.5 ps, 9% of these trajectories did not dissociate in comparison to the RRKM prediction of 0.3%. Classical power spectra for these trajectories indicate they have regular intramolecular dynamics. The N(t)/N(0) for the excitation groups are well described by a two-state coupled phase space model. From the intercept of N(t)/N(0) with random excitation, the anharmonic correction to the RRKM rate constant is approximately a factor of 1.5. | en_US |
dc.language.iso | en | en_US |
dc.publisher | AIP Publishing | en_US |
dc.subject | Direct dynamics simulation | en_US |
dc.subject | Unimolecular dissociatio | en_US |
dc.subject | Dioxetane | en_US |
dc.subject | Probing the non-RRKM dynamics | en_US |
dc.subject | 2018 | en_US |
dc.title | Direct dynamics simulations of the unimolecular dissociation of dioxetane: Probing the non-RRKM dynamics | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Chemistry | en_US |
dc.identifier.sourcetitle | Journal of Chemical Physics | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.