Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3960
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMUKHI, SUNILen_US
dc.contributor.authorMurthy, Sameeren_US
dc.contributor.authorWu, Jie-Qiangen_US
dc.date.accessioned2019-09-09T11:35:45Z
dc.date.available2019-09-09T11:35:45Z
dc.date.issued2018-01en_US
dc.identifier.citationJournal of High Energy Physics, 2018(1).en_US
dc.identifier.issn1126-6708en_US
dc.identifier.issn1029-8479en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/3960-
dc.identifier.urihttps://doi.org/10.1007/JHEP01(2018)005en_US
dc.description.abstractWe compute the single-interval Rényi entropy (replica partition function) for free fermions in 1+1d at finite temperature and finite spatial size by two methods: (i) using the higher-genus partition function on the replica Riemann surface, and (ii) using twist operators on the torus. We compare the two answers for a restricted set of spin structures, leading to a non-trivial proposed equivalence between higher-genus Siegel Θ-functions and Jacobi θ-functions. We exhibit this proposal and provide substantial evidence for it. The resulting expressions can be elegantly written in terms of Jacobi forms. Thereafter we argue that the correct Rényi entropy for modular-invariant free-fermion theories, such as the Ising model and the Dirac CFT, is given by the higher-genus computation summed over all spin structures. The result satisfies the physical checks of modular covariance, the thermal entropy relation, and Bose-Fermi equivalence.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectConformal Field Theoryen_US
dc.subjectField Theoriesen_US
dc.subjectLower Dimensions Conformalen_US
dc.subjectW Symmetryen_US
dc.subject2018en_US
dc.titleEntanglement, replicas, and Thetasen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleJournal of High Energy Physicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.